正态分布e(x^2)怎么求

问题描述:正态分布的e(x∧2)怎么求 大家好,小编来为大家解答以下问题,正态分布e(x)和e(x^2)的公式,正态分布e(x^2)怎么求期望,现在让我们一起来看看吧!

X服从正态分布,计算E(X^2),不用方差推导直接用积分怎么算!

正态分布e(x^2)怎么求的相关图片

X N(μ,σ²)

那么E(X²) = σ² + μ²。

D(X²) = ∫ (∞,-∞) [x² - E(x²)]² f(x;μ,σ²) dx。

D(X²) = ∫ (∞,-∞) [x² - E(x²)]² f(x;μ,σ²) dx。

=  ∫ (∞,-∞) [x^4 - 2x²E(x²) + E²(x²)] f(x;μ,σ²) dx。

=  ∫ (∞,-∞) [x^4 - E²(x²)] f(x;μ,σ²) dx。

=  ∫ (∞,-∞) x^4 f(x;μ,σ²) dx  - E²(x²)。

将f(x;μ,σ²) 代入

E²(x²) = (σ²+μ²)²。

扩展资料:

正态分布(Normal distribution)在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布。

如何用正态分布计算E(X^2)=?的相关图片

如何用正态分布计算E(X^2)=?

具体回答如图:

由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。

为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。

扩展资料:

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

由于“小概率事件”和假设检验的基本思想 “小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。

由此可见X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间。

参考资料来源:百度百科——正态分布。

已知随机变量X服从正态分布N(0,1),求E(X^2)、E(X^3)与E(X^4)?的相关图片

已知随机变量X服从正态分布N(0,1),求E(X^2)、E(X^3)与E(X^4)?

(1) 如果只知道 E(X),而不知道其它任何信息,是无法求得 E(X^2) 的。

(2) 对于正态分布:

所以我们这题中,Y=3X+1,Y~N(3*1+1, 9*3) = N(4,27)。

另外,3X 与 X+X+X 没有区别。

但是,如果假设有3个独立且与X同分布的随机变量 X1,X2,X3,那么 3X 与 X1+X2+X3 是有区别的,因为 3X = X+X+X 中的3个随机变量都是 X,不独立。

(3)

概率论问题,E(X平方)如何求以及一些其他问题的相关图片

概率论问题,E(X平方)如何求以及一些其他问题

X~N(0,1)

则Y=X^2~~卡方分布X^2(1)。

所以EX^2=1

E(X^4)=DY+(EY)^2=2+1=3。

E(X^3)=0.... pdf概率密度函数关于y对称。

当然,也是可以像沙发同志那样做。不过有点点麻烦/。

E(x^2)期望值怎么算 是不是只要把x平方 p

答案如下:

要求EX^2,只知道EX还不够,至少要知道x是如何分布的,也即它的分布函数或者概率密度函数。

若X~N(1,3),则Dx=3,由DX=EX^2-(EX)^2及EX的值可以算出EX^2。

若X~N(1,3),Y=3X+1,EY=E(3X+1)=3EX+1=3*1+1=4,DY=D(3X+1)=3^2*DX=9*DX=9*3=27,所以Y~N(4,27)。3X与X+X+X没有区别。

Z=X+Y的密度函数也要根据X,Y 的概率密度f(x y)来求,一般用作图法计算,先算出分布函数F(Z),再算密度函数f(z)。

也可以直接积分计算:f(z)=将f(x,z-x)对x积分,这时的难点是确定好积分上下限。如果X与Y相互独立,Z=X+Y的密度函数可以直接计算,f(z)=将f(x,z-x)对x积分=将fx(x)*fy(z-x)对x进行积分,fx(.)为x的密度函数,fy(.)为y的密度函数。

概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。

例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。

事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。

原文地址:http://www.qianchusai.com/%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83e(x%5E2)%E6%80%8E%E4%B9%88%E6%B1%82.html

奇葩说第六季免费高清视频,奇葩说第六季在线观看策驰影院

奇葩说第六季免费高清视频,奇葩说第六季在线观看策驰影院

四个小朋友春游照相看图写话,四个小朋友春游照相看图写话怎么写

四个小朋友春游照相看图写话,四个小朋友春游照相看图写话怎么写

六年级下册英语41页翻译,六年级下册英语41页翻译苏教版

六年级下册英语41页翻译,六年级下册英语41页翻译苏教版

instigating

instigating

weekday,weekday函数的使用方法

weekday,weekday函数的使用方法

parad-90

parad-90

as前面加动词什么形式,as as加动词什么形式

as前面加动词什么形式,as as加动词什么形式

二年级看图写话放风筝2,二年级看图写话放风筝范文大全60篇

二年级看图写话放风筝2,二年级看图写话放风筝范文大全60篇

员工安全心得,员工安全心得体会300字

员工安全心得,员工安全心得体会300字

vina24hkh-10

vina24hkh-10

三国志战略版先锋测试服 - 抢先体验全新战略玩法 三国志战略版手游势力值攻略 - 势力值排行榜与提升技巧 三国志战略版潼关之战开荒攻略 - 新手必看指南 三国志战略版灼烧状态详解 - 灼烧效果、武将、战法全攻略 三国志战略版功能性减伤规避攻略 - 完整机制解析与实战技巧 三国志14战法搭配攻略 - 最强战法组合推荐 三国志战略版 先锋体验官 - 率先体验最新版本,赢取专属福利 三国志战略版分城建设指南 - 建几个分城最佳策略 三国志战略版虎帐属性详解 - 虎帐等级与效果全攻略 三国志战略版三军解锁攻略 - 完整解锁条件与技巧 三国志14战法图鉴 - 全战法技能效果详解 三国志战略版八级地阵容推荐 - 最强阵容搭配攻略 三国志战略版灼烧伤害攻略 - 灼烧流武将搭配与战法解析 三国志战略版先锋测试服福利 - 豪华礼包等你来领 三国志战略版最多多少名声 - 名声系统完全攻略 三国志战略版花席援救攻略大全 - 最新玩法技巧分享 三国志战略版军屯建筑 - 最全攻略与升级指南 三国志战略版预备兵成就攻略 - 完整成就列表与获取方法 三国志战略版三军 - 最全攻略、武将搭配、阵容推荐 三国志战略版怎么快速提升五千 - 最新战力提升攻略指南 三国志战略版同类冲突规则详解 - 游戏攻略指南 三国志战略版三军兑换码 - 最新可用兑换码合集 三国志战略版吕布阵容推荐 - 最强吕布阵容搭配攻略 三国志14战法大全 - 完整战法系统解析与使用指南 三国志战略版每100名声奖励攻略 - 完整指南 三国志战略版高级建筑分配攻略 - 最优建筑布局与资源分配指南 三国志战略版拔寨攻略 - 最新技巧与队伍配置指南 三国志战略版 - 一统天下 | 策略战争手游官网 三国志战略版军屯地产量计算器 - 最全军屯地产量数据与攻略 三国志战略版陆逊灼烧攻略 - 火系武将阵容搭配技巧